Decision trees

Sistemi informativi per le Decisioni

Slide a cura di Andrew W. Moore (Carnegie Mellon)

Classificazione e predizione

- estrarre modelli che descrivono classi di dati
 - predire valori categorici
 - es.: categorizzare le richieste di prestito a un istituto bancario in "sicura" e "rischiosa"
- effettuare previsioni riguardo ad andamenti futuri
 - predire valori continui
 - es.: prevedere le spese in materiale hi-tech a partire dal reddito e dall'occupazione dei clienti
- tecniche note da tempo,
 ma limitatamente a piccole dimensioni dei dati,
 manipolabili in memoria principale
 - estensioni e ottimizzazioni per la memoria secondaria

Classificazione

- processo in due passi:
 - costruzione del modello a partire da un insieme predeterminato di classi o concetti (training set)
 - predizione delle classi per i dati al di fuori del training set

Creazione del modello

- si analizzano le tuple e gli attributi di una parte del DB
- il training set deve essere selezionato a caso
 - supervisionato (si assume che esista un attributo di etichetta = class label)
 - □ non supervisionato (clustering, le classi vengono apprese)
- il modello appreso viene espresso in forma di regole di classificazione o formule matematiche
- il modello ha la class label come output, e non come input

- è necessario stimare l'accuratezza del classificatore
 - □ test set di dati etichettati correttamente
 - □ si applica il modello e si producono le etichette
 - si valuta la percentuale di concordanze tra le etichette corrette e quello prodotte
- è necessario utilizzare un test set diverso dal training set, per evitare il fenomeno di overfitting
 - il modello appreso potrebbe derivare da specificità del training set, riusare quest'ultimo come test set porterebbe a sovrastimare la sua qualità

Predizione

- costruzione ed uso di un modello per stabilire il valore o l'intervallo di valori che un attributo non noto dovrebbe avere
 - es.: nota la classe frequentata
 da uno studente si può predire
 l'anno di nascita, con una certa probabilità
 - □ regressione

Argomenti

- Information Gain per misurare le associazioni tra input e output
- Apprendimento dai dati di un albero di decisione per la classificazione

Ecco un dataset

48000 record, 16 attributi [Kohavi, 1995]

age	employme	education	edun	marital		job	relation	race	gender	hour	country	wealth
	. ,											
39	State_gov	Bachelors	13	Never_mar		Adm_cleric	Not_in_fan	White	Male	40	United_Sta	poor
51	Self_emp_	Bachelors	13	Married		Exec_man	Husband	White	Male	13	United_Sta	poor
39	Private	HS_grad	9	Divorced		Handlers_d	Not_in_fam	White	Male	40	United_Sta	poor
54	Private	11th	7	Married		Handlers_d	Husband	Black	Male	40	United_Sta	poor
28	Private	Bachelors	13	Married		Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married		Exec_man	Wife	White	Female	40	United_Sta	poor
50	Private	9th	5	Married_sr		Other_serv	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married		Exec_man	Husband	White	Male	45	United_Sta	rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_in_fan	White	Female	50	United_Sta	rich
42	Private	Bachelors	13	Married		Exec_man	Husband	White	Male	40	United_Sta	rich
37	Private	Some_coll	10	Married		Exec_man	Husband	Black	Male	80	United_Sta	rich
30	State_gov	Bachelors	13	Married		Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar		Adm_cleric	Own_child	White	Female	30	United_Sta	poor
33	Private	Assoc_acc	12	Never_mar		Sales	Not_in_fan	Black	Male	50	United_Sta	poor
41	Private	Assoc_voc	11	Married		Craft_repai	Husband	Asian	Male	40	*MissingVa	rich
34	Private	7th_8th	4	Married		Transport_	Husband	Amer_India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar		Farming_fi	Own_child	White	Male	35	United_Sta	poor
33	Private	HS_grad	9	Never_mar		Machine_c	Unmarried	White	Male	40	United_Sta	poor
38	Private	11th	7	Married		Sales	Husband	White	Male	50	United_Sta	poor
44	Self_emp_	Masters	14	Divorced		Exec_man	Unmarried	White	Female		United_Sta	
41	Private	Doctorate	16	Married		Prof_speci	Husband	White	Male	60	United_Sta	rich
:	:	:	:	:	:	:	:	:	:	:	:	:

Classificazione

- Dato un attributo (es.: ricchezza), cercare di predire il valore di ricchezza di altre persone utilizzando gli altri attributi
- Si applica in genere ad attributi categorici (in output)
 - Attributo categorico: un attributo i cui valori possibili sono in numero finito (e limitato)
 - Confrontare con attributi reali

A proposito del dataset

- È un sottoinsieme dei dati del US Census 1990
- È disponibile online sul sito dell'UCI Machine Learning Datasets repository

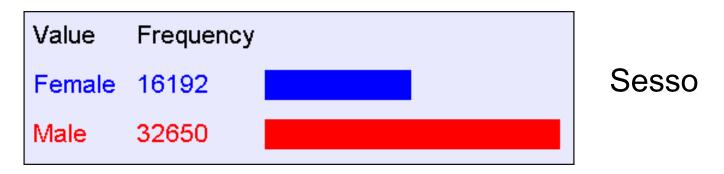
```
age edunum race hours_worked
employment marital gender country
taxweighting job capitalgain wealth
education relation capitalloss agegroup

This color = Real-valued This color = Symbol-valued
```

Successfully loaded a new dataset from the file \tadult.fds. It has 16 attributes and 48842 records.

Che ci facciamo con il dataset?

Possiamo guardare gli istogrammi ...



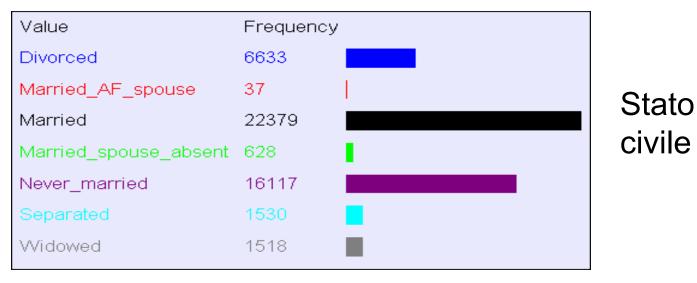


Tabelle di contingenza

Altro nome per un istogramma:

Una tabella di contingenza unidimensionale

- Algoritmo per creare tabelle di contingenza a k dimensioni:
 - □ Selezionare *k* attributi dal dataset:

$$a_1, a_2, ..., a_k$$

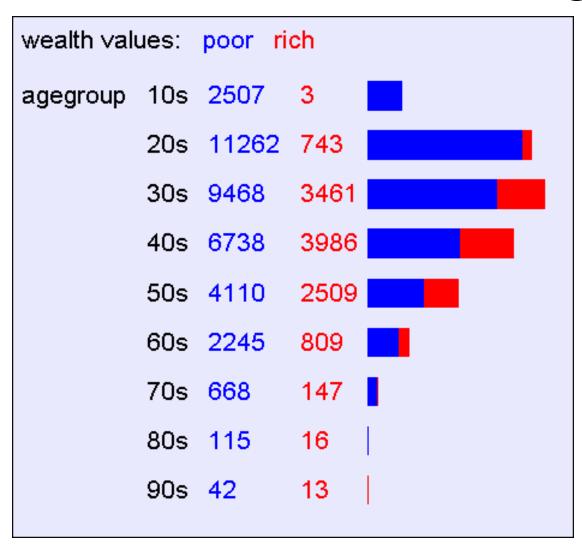
- □ Per ogni possibile combinazione di valori, a_1 ,= x_1 , a_2 ,= x_2 , ..., a_k ,= x_k , memorizzare la frequenza dei record con tali valori
- Chiamata anche "datacube k-dimensionale"

Una tabella di contingenza 2-d

wealth ∨alues: poor rich					
agegroup	10s	2507	3		
	20s	11262	743		
	30s	9468	3461		
	40s	6738	3986		
	50s	4110	2509		
	60s	2245	809		
	70s	668	147		
	80s	115	16		
	90s	42	13		

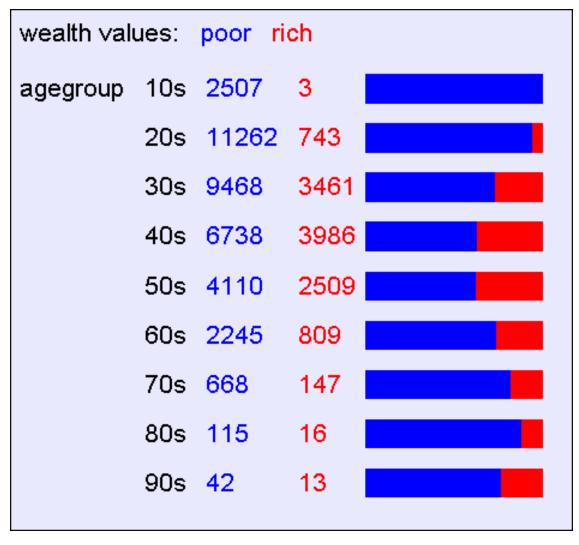
 Per ogni coppia di valori degli attributi (età, ricchezza) possiamo vedere il numero di record corrispondenti

Una tabella di contingenza 2-d



Più semplice da valutare graficamente

Una tabella di contingenza 2-d



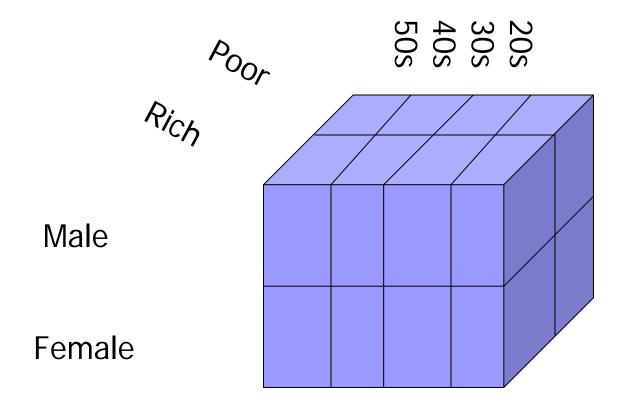
 Più semplice vedere casi "interessanti" se normalizziamo gli istogrammi

Una tabella di contingenza 2-d un po' più grande

job valu	ies: Ad	dm_clerical	Craft_	repair		Farm	ning_fis	hing	Ma	chine_	op_insp	oct	Priv_ho	ouse_	serv	Prote	ctive_s	erv T	ech_supp	ort	
Missin	gValue Ar	rmed_Forces	Exec_	manage	eria	l Hand	dlers_c	leane	rs Oth	her_ser	vice		Prof_s	pecial	ty	Sales		T	ransport_	moving	
marital	Divorced		270	1192	0	679	890	90	197	434	762		795	121	664	239	254				
	Married_AF	F_spouse	5	6	0	4	3	1	1	1	5		4	1	5	0	1				
	Married		928	1495	7	3818	3600	869	724	1469	1088		3182	583	2491	609	1489				
	Married_sp	ouse_absent	45	84	0	77	52	35	32	37	92		64	7	55	9	30				
	Never_mar	ried	1242	2360	8	1301	1260	434	1029	872	2442		1849	237	1992	506	486				
	Separated		97	224	0	160	126	23	63	123	275		145	23	146	48	56				
	Widowed		222	250	0	73	155	38	26	86	259		133	11	151	35	39				

Tabelle di contingenza 3-d

Più difficili da comprendere!



Fermiamoci un po' a pensare ...

- Perché dovremmo volere studiare le tabelle di contingenza?
- Con 16 attributi, quante tabelle di contingenza 1-d esistono?
- Quante tabelle di contingenza 2-d esistono?
- Quante tabelle di contingenza 3-d?
- Con 100 attributi quante tabelle di contingenza 3-d esistono?

Fermiamoci un po' a pensare ...

- Perché dovremmo volere studiare le tabelle di contingenza?
- Con 16 attributi, quante tabelle di contingenza 1-d esistono? 16
- Quante tabelle di contingenza 2-d esistono? 16*15/2 = 120
- Quante tabelle di contingenza 3-d? 560
- Con 100 attributi quante tabelle di contingenza 3-d esistono? 161700

Possiamo analizzare "manualmente" le tabelle di contingenza?

- Studiare 1 tabella di contingenza:
 - □ può essere interessante
- Studiare 10 tabelle:
 - □ già meno interessante
- Studiare 100 tabelle:
 - □ abbastanza noioso
- Studiare 100000 tabelle:
 - decisamente noioso

I bit...

- Supponiamo di osservare un insieme di valori casuali di un attributo X
- X ha solo quattro possibili valori

$$P(X=A) = 1/4 | P(X=B) = 1/4 | P(X=C) = 1/4 | P(X=D) = 1/4$$

- Potremmo osservare: BAACBADCDADDDA...
- Trasmettiamo i dati su un collegamento seriale binario
- Codifichiamo ogni valore con 2 bit
 (es.: A = 00, B = 01, C = 10, D = 11)
- 01000010010011101100111111100...

Meno bit...

 Supponiamo che qualcuno ci dica che le probabilità non sono tutte uguali

- È possibile inventare una codifica che usi (in media) solamente 1.75 bit per simbolo. Come?
- Per esempio:
 - □ A=0, B=10, C=110, D=111

Ancora meno bit...

Supponiamo di avere tre valori equiprobabili

$$P(X=A) = 1/3 | P(X=B) = 1/3 | P(X=C) = 1/3 |$$

- È possibile codificare i valori con 2 bit
 - □ A=00, B=01, C=10
- Possiamo ideare una codifica che usi solamente 1.6 bit per simbolo in media?
- In teoria, il risultato ottimo si ottiene con 1.58496 bit per simbolo

Caso generale

Supponiamo che X assuma m valori: V₁, V₂, ..., V_m

$$P(X=V_1) = p_1 | P(X=V_2) = p_2 | ... | P(X=V_m) = p_m |$$

Qual è il minimo numero di bit per simbolo necessari, in media, per trasmettere un insieme di simboli ottenuti dalla distribuzione di X?

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m = -\sum_{j=1}^m p_j \log_2 p_j$$

- \blacksquare H(X) = Entropia di X
 - "Entropia elevata" significa che X ha una distribuzione uniforme (noiosa)
 - □ "Entropia bassa" significa che X ha una distribuzione variegata (alti e bassi)

Caso generale

Supponiamo che X assuma m valori: $V_1, V_2, ..., V_m$

$$P(X=V_1) = p_1 | P(X=V_2) = p_2 |$$

Qual | Un istogramma della media distribuzione dei valori di X sarebbe "piatto" dalla

Isiem

Un istogramma della bit pe distribuzione dei valori di X avrebbe molti bassi e solo pochi "picchi"

$$= -\sum_{j=1}^{m} p_j \log_2 p_j$$

- - "Entropia elevata" significa che X ha una dist\ buzione uniforme (noiosa)
 - □ "Entropia bassa" significa che X ha una distribuzione variegata (alti e bassi)

Caso generale

Supponiamo che X assuma m valori: V₁, V₂, ..., V_m

□ "Entropia bassa" significa che X ha una distribuzione variegata (alti e bassi)

Entropia condizionata specifica H(Y|X=v)

- Supponiamo di predire il valore di Y se conosciamo X
 - X = College Major
 - Y = Likes "Gladiator"
- Assumiamo che i valori riflettano le vere probabilità
- Dai dati stimiamo
 - \square P(LikeG = Yes) = 0.5
 - \square P(Major = Math & LikeG = No) = 0.25
 - \square P(Major = Math) = 0.5
 - □ P(LikeG = Yes | Major = History) = 0
- Nota:
 - \Box H(X) = 1.5
 - \Box H(Y) = 1

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Entropia condizionata specifica H(Y|X=v)

Definizione di Entropia condizionata specifica:

H(Y|X=v) = L'entropia di Y solamente in quei record nei quali X assume il valore v

Esempio:

$\Box H($	Y	X=M	ath)) = 1
\				/

$$\Box$$
 $H(Y|X=History) = 0$

$$\Box H(Y|X=CS) = 0$$

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Entropia condizionata H(Y|X)

- Definizione di Entropia condizionata:
 - H(Y|X) = La media delle entropie condizionate di Y
- selezionando a caso un record quale sarebbe l'entropia di Y, condizionata al valore specifico di X
- numero medio di bit necessari per trasmettere Y se sorgente e destinazione conoscono il valore di X
- = $\Sigma_j Prob(X=v_j) H(Y|X=v_j)$

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Entropia condizionata H(Y|X)

- Definizione di Entropia condizionata:
- = $\Sigma_j Prob(X=v_j) H(Y|X=v_j)$

\mathbf{v}_{j}	$Prob(X=v_j)$	$H(Y X=v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5*1 + 0.25*0 + 0.25*0$$

= 0.5

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Information Gain

- Definizione di Information Gain:
- = Devo trasmettere Y.
 Quanti bit, in media, potrei risparmiare se entrambi conoscessimo X?
- IG(Y|X) = H(Y) H(Y|X)
- Esempio:
 - \Box H(Y) = 1
 - $\Box H(Y|X) = 0.5$
 - □ Quindi IG(Y|X) = 1 0.5 = 0.5

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Esempio su Information Gain

```
wealth values: poor rich

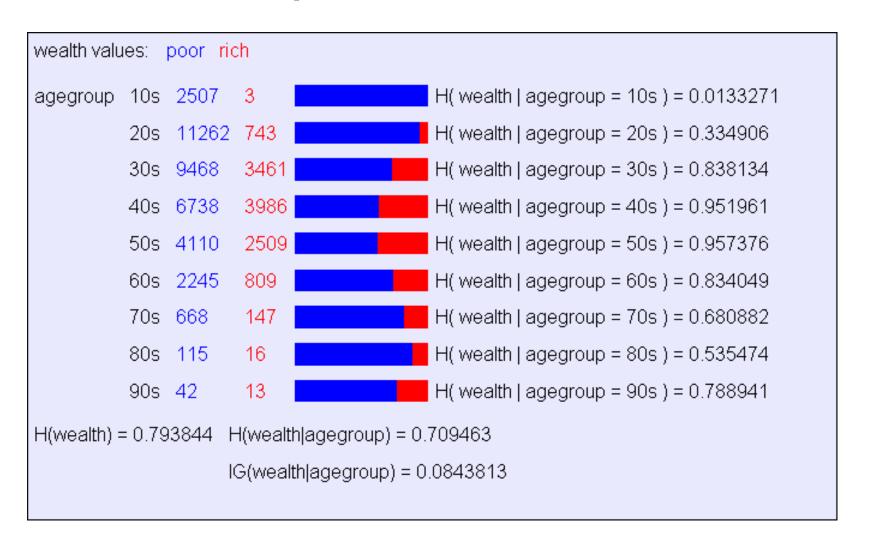
gender Female 14423 1769 H( wealth | gender = Female ) = 0.497654

Male 22732 9918 H( wealth | gender = Male ) = 0.885847

H(wealth) = 0.793844 H(wealth|gender) = 0.757154

IG(wealth|gender) = 0.0366896
```


Altro esempio



Information Gain relativo

- Definizione di Information Gain relativo:
- = Devo trasmettere Y.
 Che percentuale di bit,
 in media, potrei risparmiare
 se entrambi conoscessimo X?
- $\blacksquare RIG(Y|X) = (H(Y) H(Y|X))/H(Y)$
- Esempio:
 - \Box H(Y) = 1
 - $\Box H(Y|X) = 0.5$
 - \square Quindi RIG(Y|X) = (1-0.5)/1 = 0.5

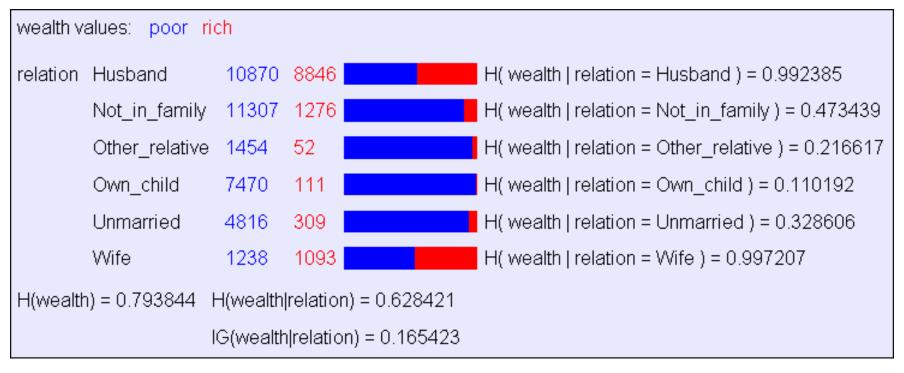
X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

A cosa ci serve l'Information Gain?

- Supponiamo di voler predire se l'aspettativa media di vita superi gli 80 anni
- Dai dati storici troviamo che:
 - □ IG(LongLife|HairColor) = 0.01
 - \square IG(LongLife|Smoker) = 0.2
 - \square IG(LongLife|Gender) = 0.25
 - □ IG(LongLife|LastDigitOfSSN) = 0.00001
- IG ci dice quanto può essere interessante una tabella di contingenza 2-d

Alla ricerca di IG elevati

 Dato un attributo (es.: wealth) che cerchiamo di predire, possiamo chiedere al computer di calcolare quale attributo abbia il maggior Information Gain.



Creazione di Decision Tree

- Un Decision Tree è una strutturazione gerarchica di un insieme di attributi da controllare per cercare di predire l'attributo di output
- Per decidere quale attributo controllare per primo, cerchiamo quello che fornisce l'information gain più elevato
- Quindi ricorsione ...

Un piccolo esempio: Miglia Per Gallone

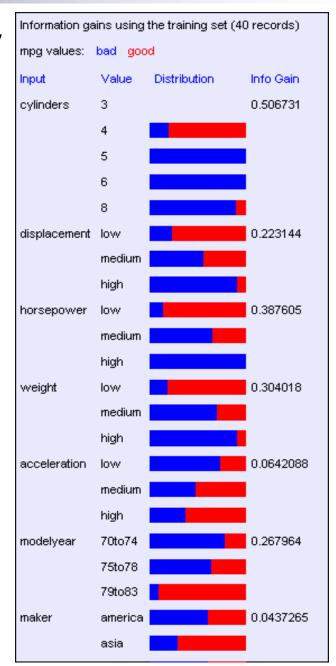
40 record

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

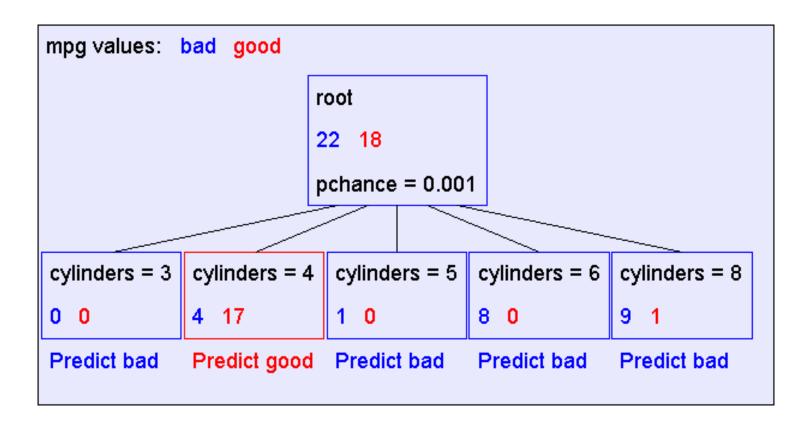
Dall'UCI repository

Supponiamo di voler predire MPG

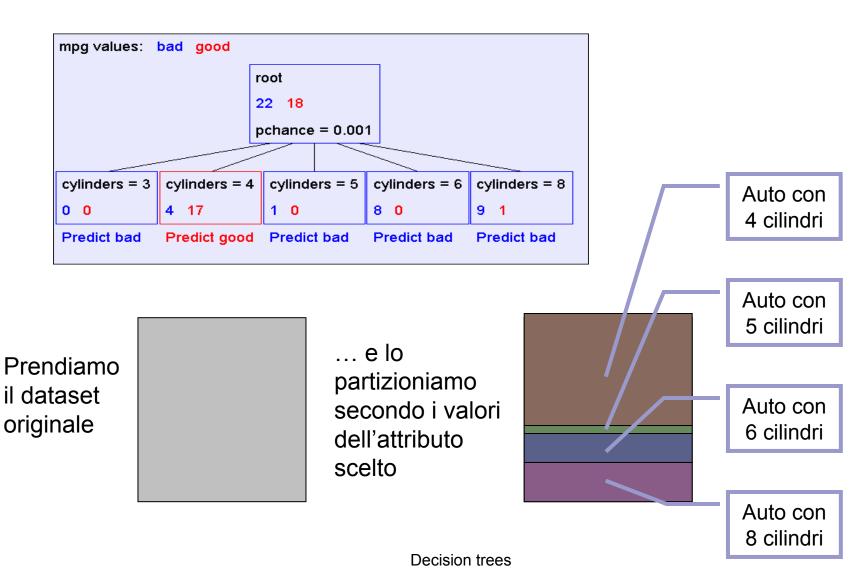
Calcoliamo tutti gli information gain...



Un "Decision Stump"

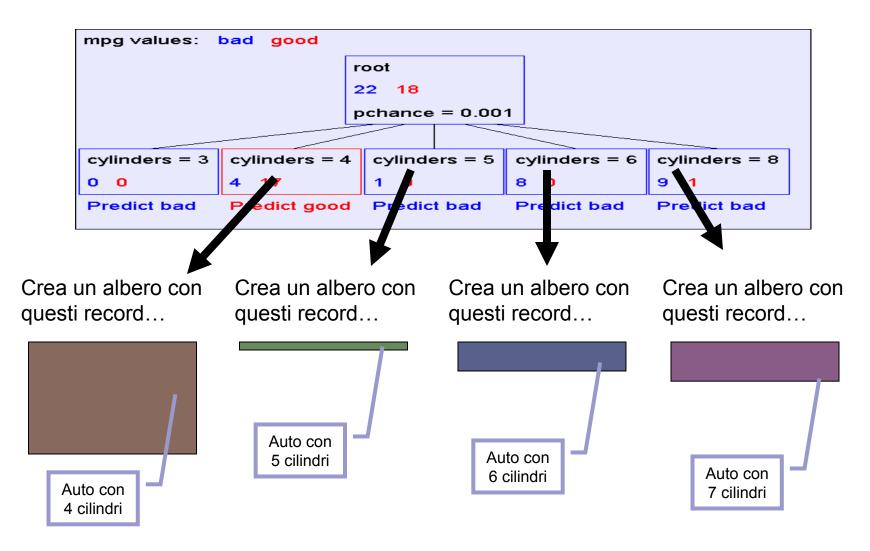


Ricorsione

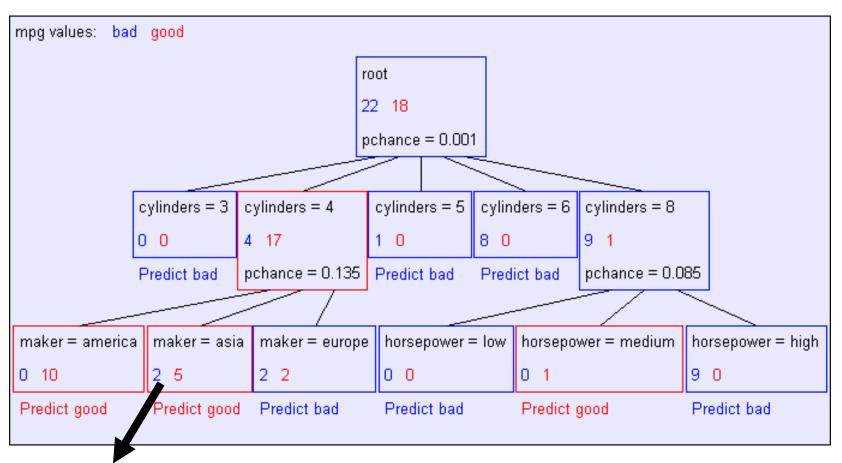


41

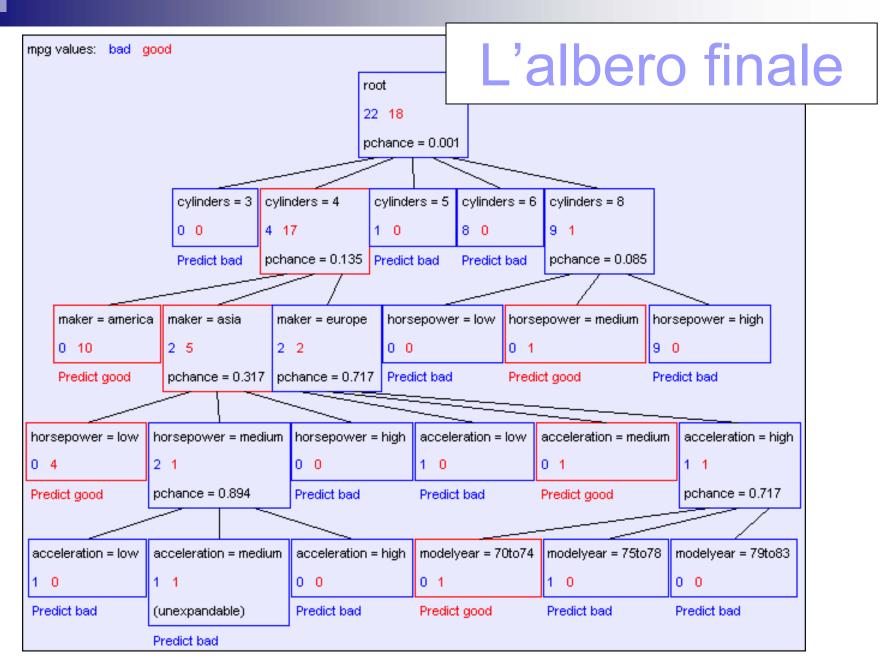
Ricorsione

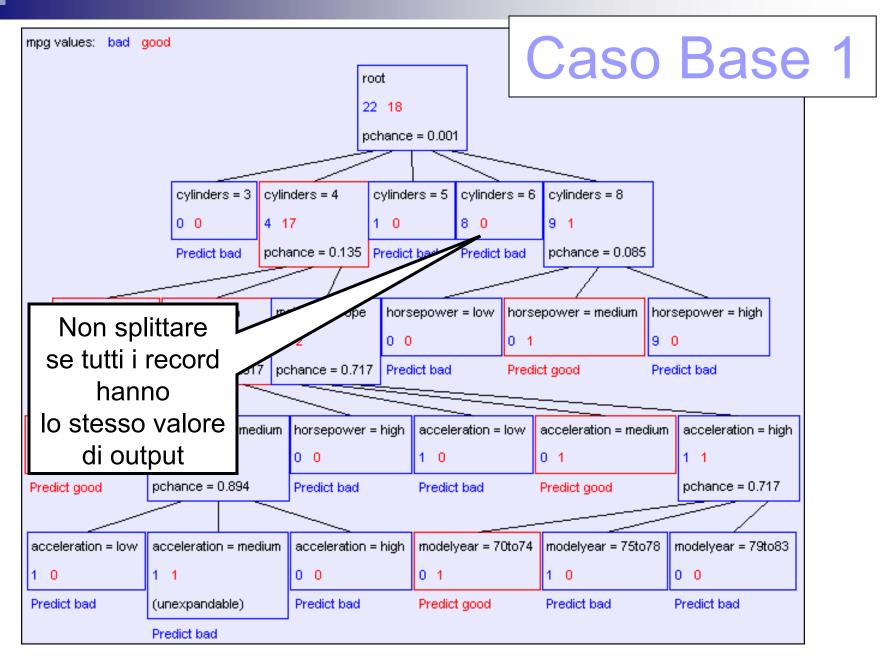


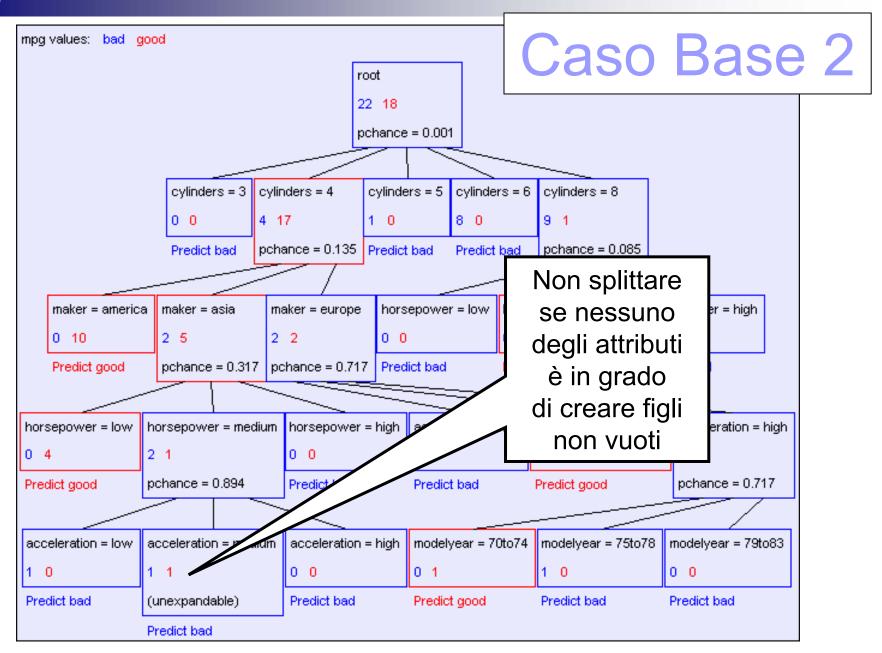
Secondo livello dell'albero

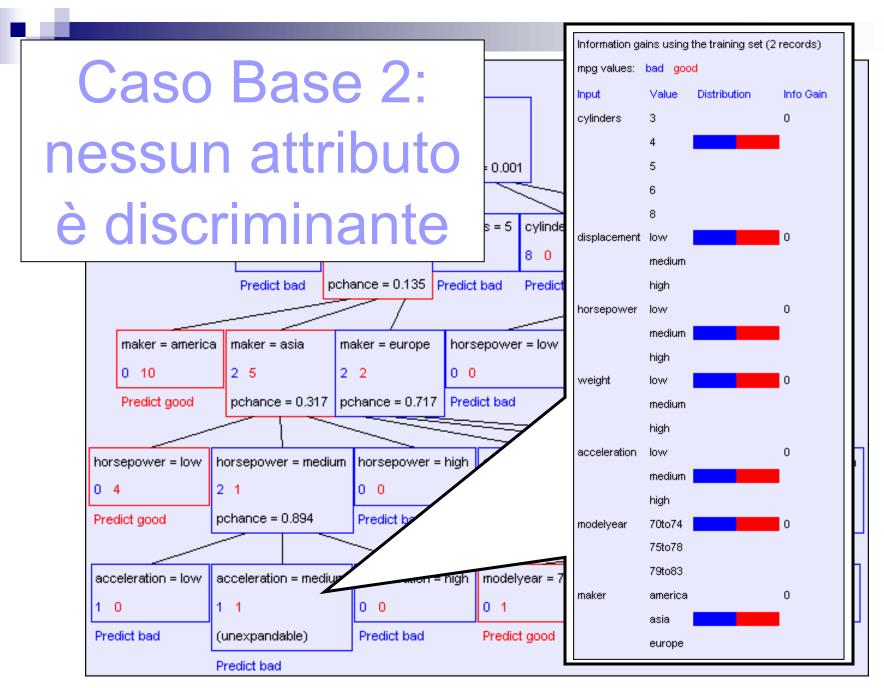


Costruisci ricorsivamente un albero sui 7 record con 4 cilindri ed il costruttore Asiatico (Ricorsione simile negli altri casi)









Casi Base

- Caso Base 1: non effettuare ricorsione se tutti i record nell'insieme di dati attuale hanno lo stesso valore dell'attributo di output
- Caso Base 2: non effettuare ricorsione se tutti i record nell'insieme di dati attuale hanno gli stessi valori degli attributi di input

Creazione di Decision Tree

BuildTree(DataSet,Output)

- Se tutti i valori di output in *DataSet* sono identici, restituisci un nodo foglia "predici questo valore di output"
- Se non esistono altri attributi di input da considerare, restituisci un nodo foglia "predici il valore di output più frequente"
- Altrimenti trova l'attributo X con il più alto RIG
- Se X ha n_X valori distinti:
 - \square Crea e restituisci un nodo interno con n_x figli
 - □ L'*i*-esimo figlio va costruito chiamando

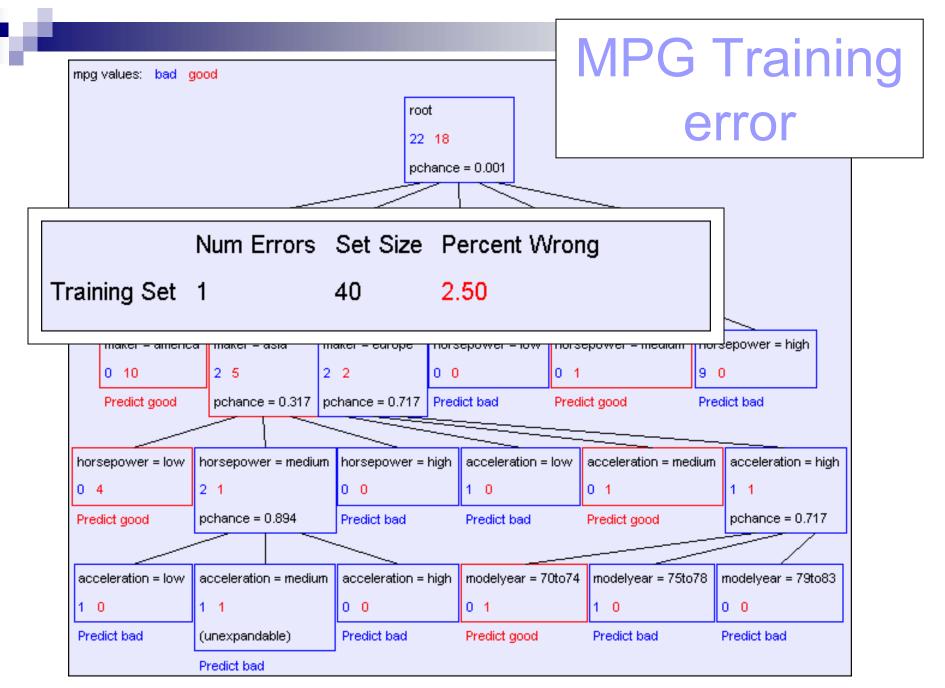
BuildTree(DS_i,Output)

□ Dove DS_i consiste di quei record in DataSet per cui X = i-esimo valore di X

Training Set Error

- Per ciascun record, navigare il decision tree per vedere il valore predetto
- Per quanti record la predizione del decision tree è sbagliata (ovvero, diversa dal valore memorizzato nel DB)?
- Questa quantità è detta

training set error



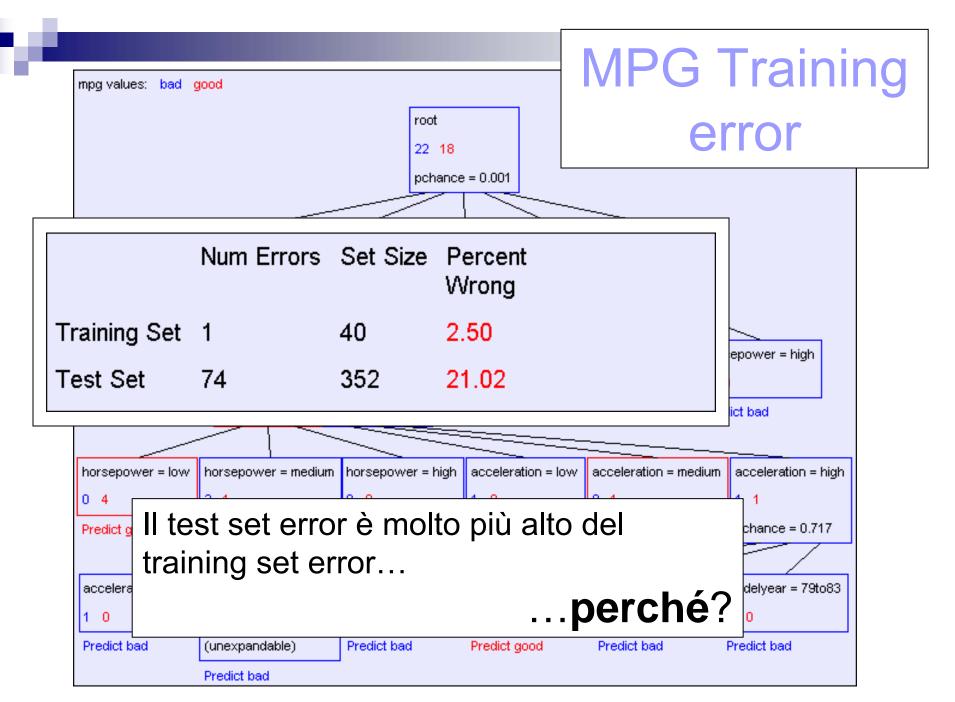
Un momento: perché stiamo facendo tutto questo?

- In genere, non per predire l'output su dati (il training set) che abbiamo già visto ...
- Molto più utile sarebbe predire i valori di output per dati che incontreremo nel futuro!

Attenzione: un pregiudizio comune sul Data Mining è che i due punti precedenti siano gli unici motivi che portano al learning.
Ne esistono almeno un'altra decina ...

Test Set Error

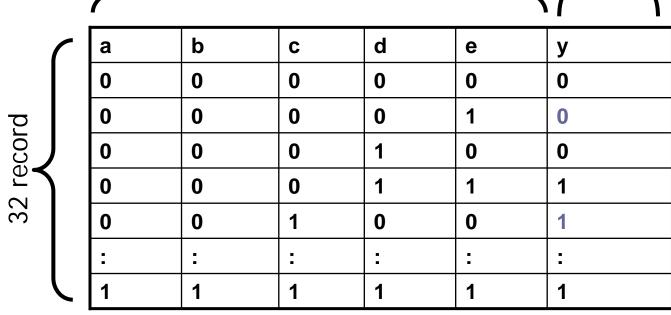
- Supponiamo di guardare al futuro
- Quando abbiamo costruito il decision tree, abbiamo tenuto da parte alcuni dati
- Una volta effettuato il learning, possiamo vedere le predizioni dell'albero su tali dati
- Questa risulta essere una buona simulazione di ciò che accadrà quando proveremo a predire nel futuro
- L'errore ottenuto si chiama Test Set Error



Un esempio artificiale

Creiamo un training dataset

5 input, binari, sono generati in tutte le 32 possibili combinazioni Output y = copia di e, tranne che per un 25% (casuale) dei record che hanno y = !e

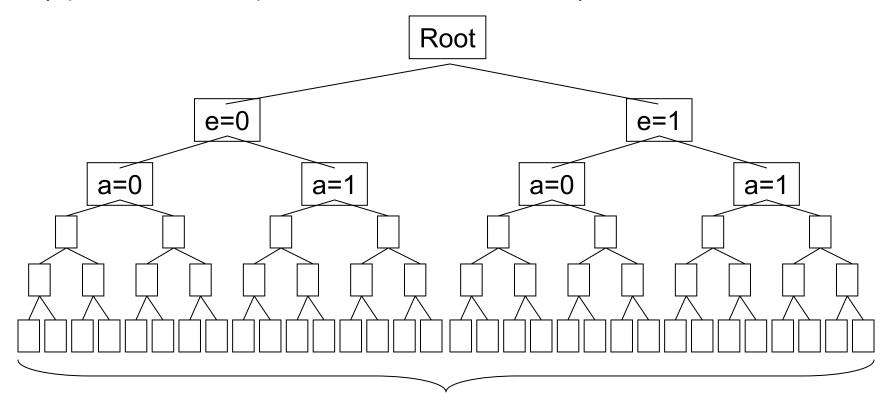


Nel nostro esempio artificiale

- Supponiamo che qualcuno generi un test set seguendo la stessa tecnica
- Il test set è uguale al training set, tranne che per alcune y che saranno diverse
- Alcune y che erano "errate" nel training set saranno "corrette" nel test set
- Alcune y che erano "corrette" nel training set saranno "errate" nel test set

Creare un albero con il training set artificiale

 Supponiamo di costruire un albero completo (splittiamo sempre fino al caso base 2)



25% di questi nodi foglia saranno "errati"

Training set error per il nostro albero

- Tutti i nodi foglia contengono esattamente un record, quindi ...
- Avremo un training set error = zero

Test dell'albero con il test set

	1/4 dei nodi sono errati	3/4 sono corretti
1/4 dei record del test set sono errati	1/16 del test set sarà predetto correttamente per il motivo sbagliato	3/16 del test set sarà predetto erroneamente perché il test record è errato
3/4 sono corretti	3/16 del test set sarà predetto erroneamente perché il nodo è errato	9/16 delle predizioni sul test set saranno corrette

In totale, ci attendiamo di sbagliare i 3/8 delle predizioni del test set

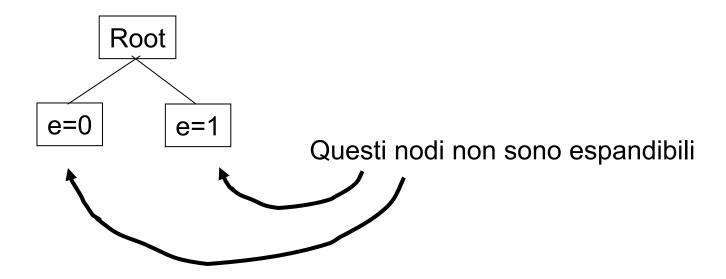
Cosa ci dimostra l'esempio?

- Per prima cosa, la differenza tra training set error e test set error
- ma, più importante, indica se c'è qualcosa da fare per predire correttamente dati futuri

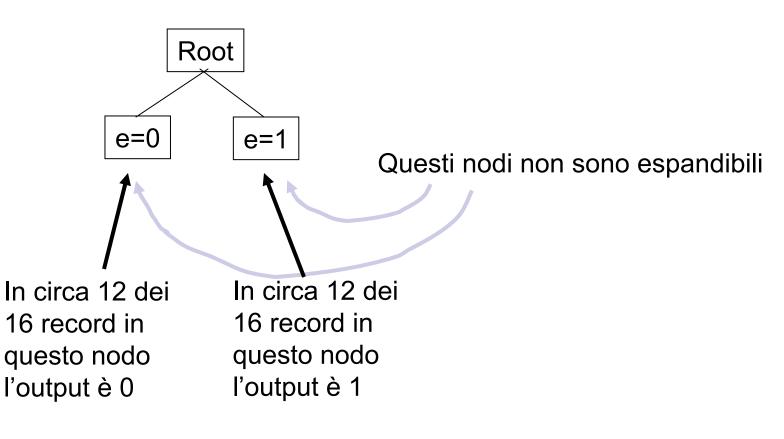
Supponiamo di avere meno dati

Non consideriamo i bit irrilevanti

Senza accesso ai bit irrilevanti ...



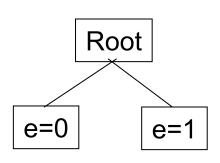
Senza accesso ai bit irrilevanti ...



Quindi questo predirà quasi certamente 0

Quindi questo predirà quasi certamente 1

Senza accesso ai bit irrilevanti ...



	Quasi nessun nodo dell'albero è errato	Quasi tutti i nodi sono corretti
1/4 dei record del test set sono errati	n/a	1/4 del test set sarà predetto erroneamente perché il test record è errato
3/4 sono corretti	n/a	3/4 delle predizioni sul test set saranno corrette

In totale, ci aspettiamo di sbagliare solamente 1/4 delle predizioni sul test set

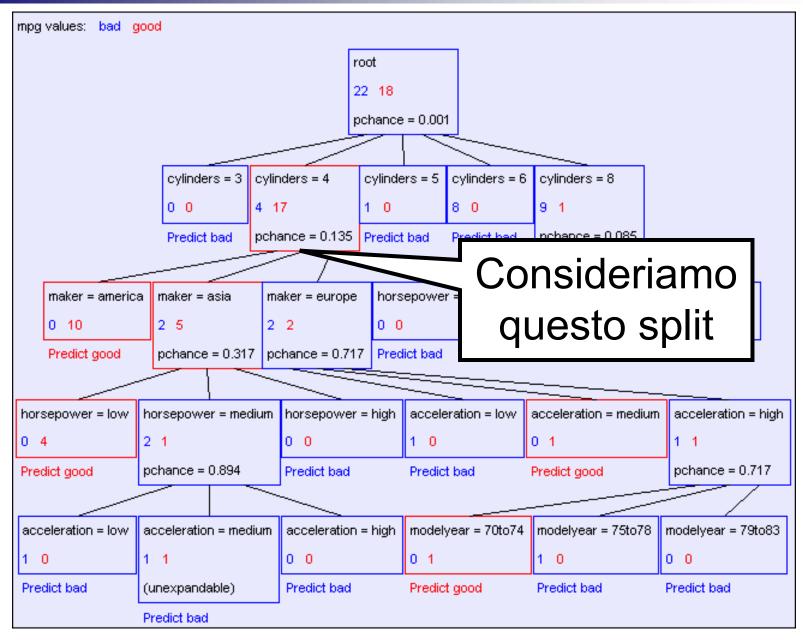
Overfitting

- Definizione: se l'algoritmo di machine learning predice il rumore (cioè presta attenzione alle parti irrilevanti dei dati) allora è in overfitting.
- Fatto (teorico ed empirico): se l'algoritmo di machine learning è in overfitting, le sue prestazioni sui dati del test set possono essere peggiori di un algoritmo "normale"

Evitare l'overfitting

- In genere, non sappiamo prima quali sono le variabili irrilevanti
- ... e queste potrebbero dipendere dal contesto
 - □ Per esempio, se y = a AND b allora b è una variabile irrilevante solamente nella porzione dell'albero in cui a=0

È possibile usare semplici statistiche per sapere quando si sta andando in overfitting



M

Un test chi-quadro

- Supponiamo che MPG sia completamente scorrelato dal continente del produttore
- Qual'è la probabilità di vedere comunque dati che presentino questo livello apparente di associazione?

Usando un tipo particolare di test chi-quadro, la risposta è il 13.5%.

Il test chi quadro

- È usato per decidere se un campione di dati segue una certa distribuzione di probabilità
- Si considera l'attributo X diviso in k classi mutuamente esclusive
- Sia p_i la probabilità di ottenere un campione all'interno dell'*i*-esima classe
- Siano n_i il numero di campioni all'interno dell'*i*-esima classe e sia $n = \sum_i n_i$

Variabili casuali

Per trovare una statistica di test appropriata, consideriamo k=2 e la variabile standardizzata Y:

$$Y = \frac{n_1 - n p_1}{\sqrt{n p_1 (1 - p_1)}}$$

- Se n è sufficientemente grande,
 Y ha una distribuzione normale
- Quindi Y² ha una distribuzione a chi quadro con 1 grado di libertà

Distribuzione chi quadro

Segue che:

$$\frac{(n_1 - n p_1)^2}{n p_1 (1 - p_1)} = \frac{(n_1 - n p_1)^2}{n p_1} + \frac{(n_1 - n p_1)^2}{n p_2}$$

$$= \frac{(n_1 - n p_1)^2}{n p_1} + \frac{(n_2 - n p_2)^2}{n p_2}$$

$$= \frac{(n_1 - n p_1)^2}{n p_1} + \frac{(n_2 - n p_2)^2}{n p_2}$$

segue una distribuzione a chi quadro con 1 grado di libertà

Generalizzando

■ La statistica $\sum_{i=1}^{k} \frac{(n_i - n p_i)}{n p_i}$

ha distribuzione chi quadro con *k*-1 gradi di libertà

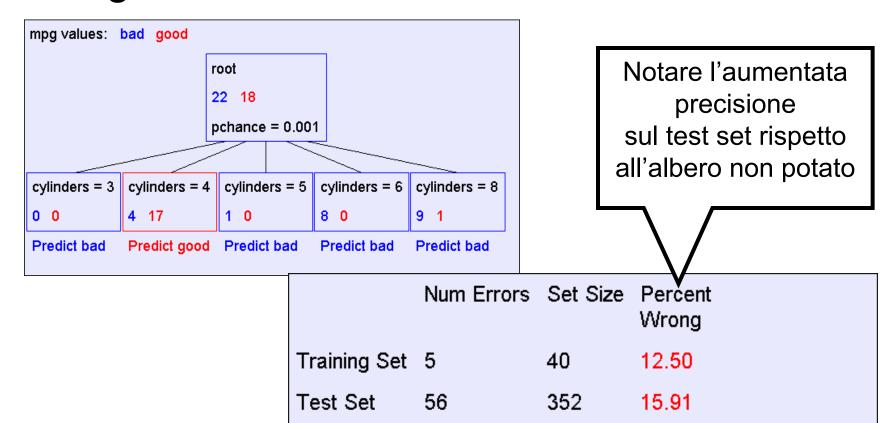
■ Tale statistica (anche detta test di Pearson) ha valore 0 se c'è allineamento perfetto tra le frequenze osservate e quelle attese

Usare chi-quadro per evitare l'overfitting

- Costruiamo il decision tree come al solito
- Quando non riusciamo a farlo crescere, cominciamo a "potarlo" :
 - □ Cominciando dal fondo dell'albero, cancellare gli split per cui prob > MaxProb
 - □ Continuare verso l'alto finché non ci sono più nodi da potare
- MaxProb è un parametro "magico" da specificare, che indica la volontà di rischiare l'overfitting

Esempio di "potatura"

Con MaxProb = 0.1, otterremmo il seguente MPG decision tree:

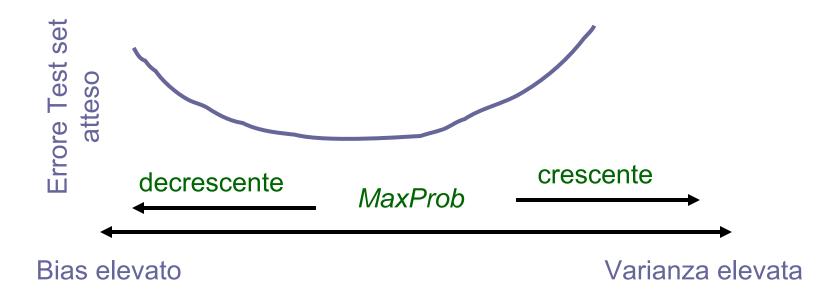


MaxProb

- Buone notizie: Il decision tree può automaticamente modificare le proprie decisioni sulla potatura a seconda della quantità apparente di rumore
- Cattive notizie: L'utente deve proporre un "buon" valore per MaxProb
- Buone notizie: Con un po' di lavoro in più, il valore ottimale di *MaxProb* può essere stimato con una tecnica detta di *cross-validazione*

MaxProb

 Nota tecnica: MaxProb è un parametro di regolarizzazione



L'albero più semplice

 Nota che questa potatura può essere difficile da trovare euristicamente

> La struttura ad albero più semplice per cui tutti i contrasti all'interno di nodi foglia possono essere dovuti al caso

- Questo non equivale a chiedere "lo schema di classificazione più semplice per cui ..."
- I decision tree tendono a preferire i classificatori che possono essere espressi in forma d'albero

Espressività dei Decision Tree

- Assumiamo che tutti gli input e gli output siano Booleani
- Quali funzioni Booleane possono essere rappresentate da decision tree?
- Risposta: tutte le funzioni Booleane
- Dimostrazione:
 - □ Prendere una qualsiasi funzione Booleana
 - Convertirla in una tabella di verità
 - Costruire un decision tree nel quale ogni riga della tabella di verità corrisponda ad un percorso all'interno dell'albero

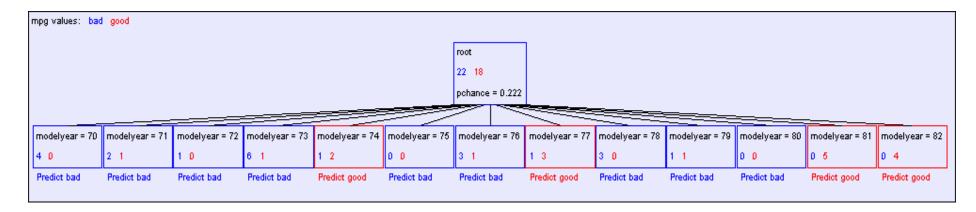
Input a Valori Reali

Come facciamo se alcuni attributi di input sono a valori reali?

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Idea 1: splittare su ogni possibile valore

Idea "un ramo per ogni valore"



- Senza speranza: con un fattore di diramazione così elevato, c'è per forza overfit
- Nota: *prob* è 0.222 nell'esempio ...
 - □ Fissando MaxProb a 0.05 avremmo potato tutto l'albero ottenendo un singolo nodo radice

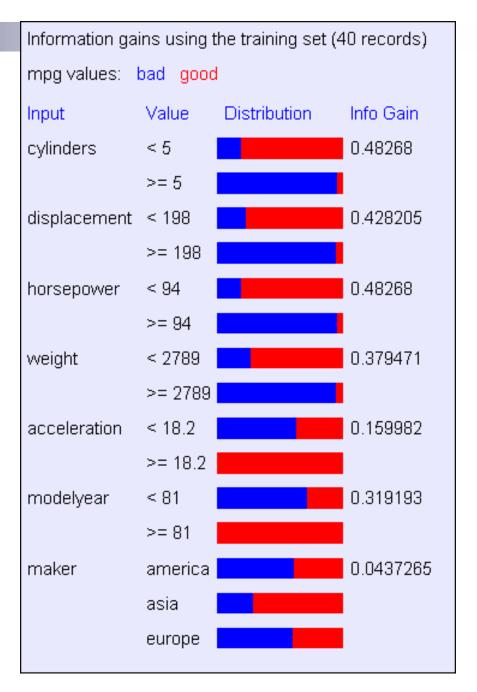
Un'idea migliore: split con soglia

- Supponiamo che X sia a valori reali
- Definiamo IG(Y|X:t) come H(Y) H(Y|X:t)
- Definiamo H(Y|X:t) = H(Y|X<t) P(X<t) + H(Y|X>=t) P(X>=t)
 - □ IG(Y|X:t) è l'information gain per predire Y se tutto ciò che sappiamo è se X è maggiore o minore di t
- Quindi definiamo $IG^*(Y|X) = max_t IG(Y|X:t)$
- Per ogni attributo a valori reali, usiamo IG*(Y|X) per valutarne la capacità di split

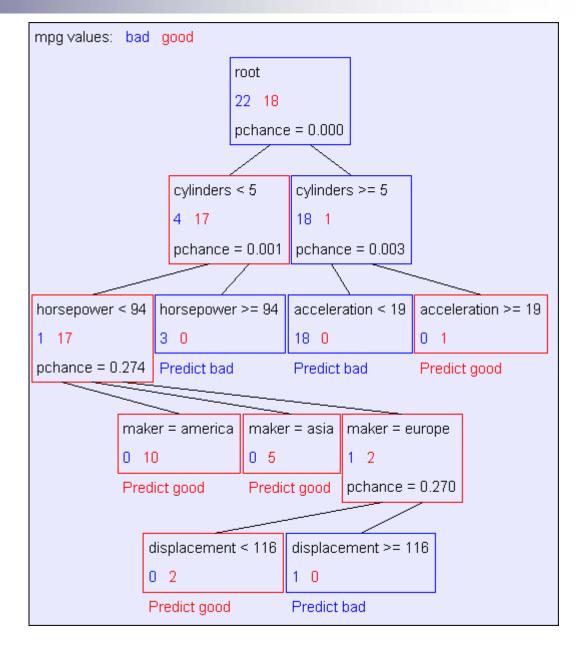
Complessità Computazionale

- Possiamo calcolare $IG^*(Y|X)$ in tempo $R \log R + 2 R n_v$
- dove
 - □ R è il numero di record nel nodo attuale
 - \square n_v è la cardinalità (numero di valori distinti) di Y
- Come?
 - Ordiniamo i record secondo valori crescenti di X
 - □ Quindi creiamo $2*n_y$ tabelle di contingenza corrispondenti al calcolo di $IG(Y|X:x_{min})$
 - Infine iteriamo sui record, controllando ogni soglia tra valori adiacenti di X, aggiornando incrementalmente le tabelle di contingenza
 - Per un ulteriore velocizzazione, si possono testare solamente i valori diversi di Y

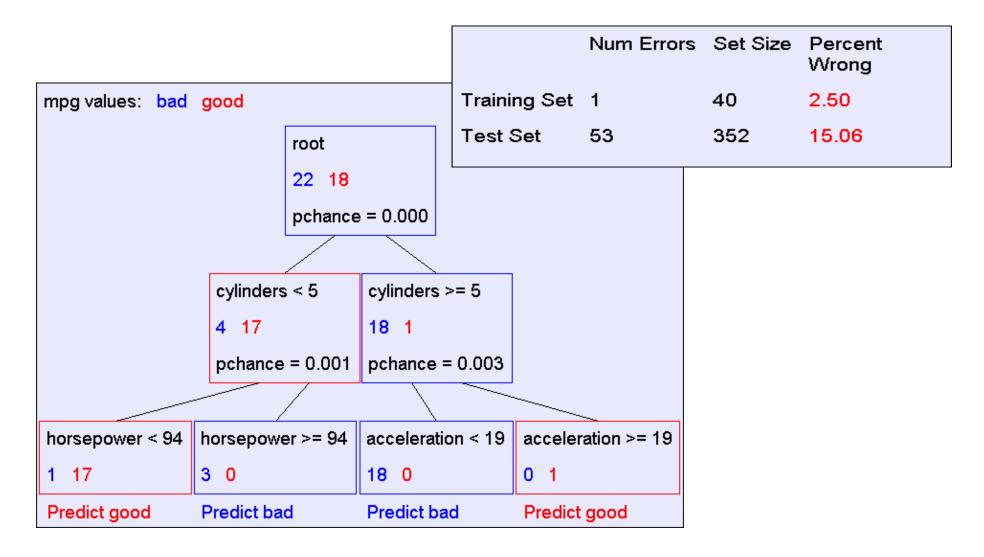
Esempio con MPG



Albero non potato a valori reali



Albero potato a valori reali

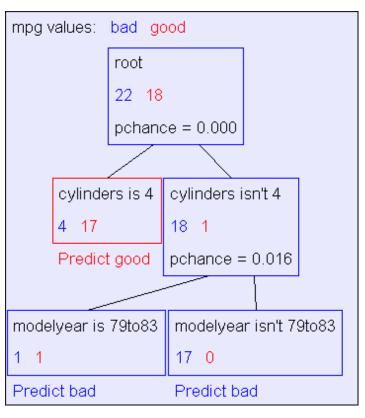


Split Categorici Binari

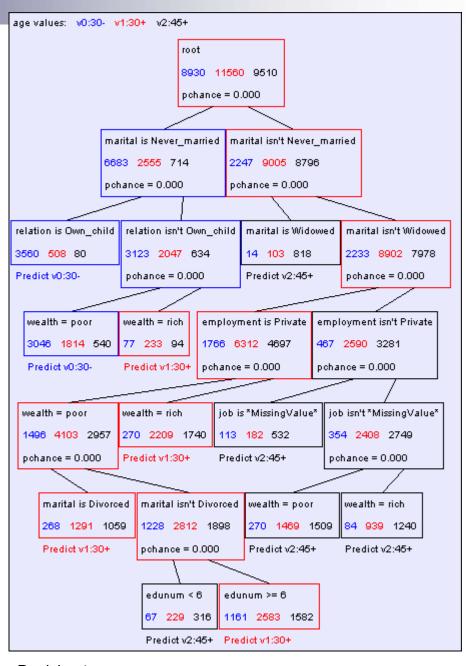
- Un classico "trucco"
- Permette split fatti così:

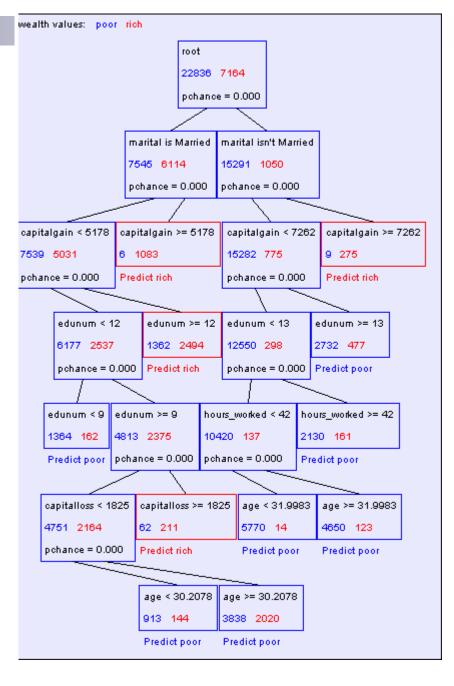
Root Attributo = valore Attributo != valore

Esempio:

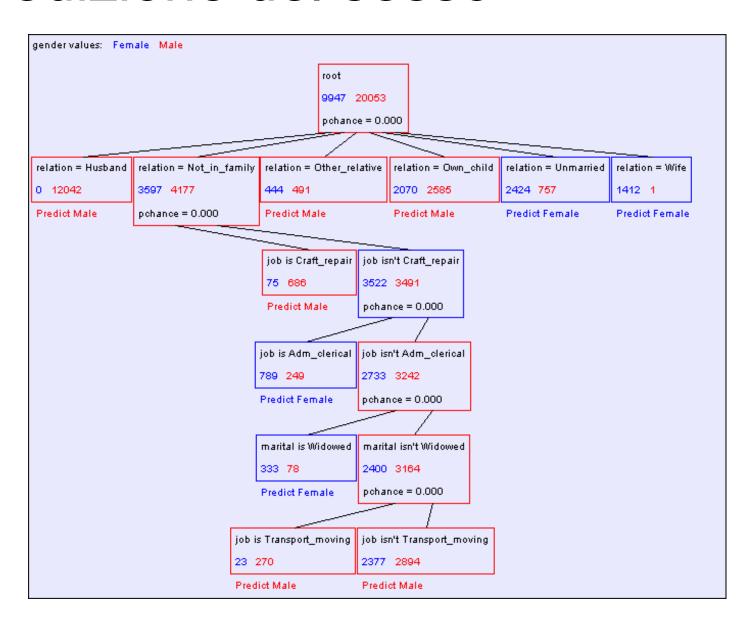


Predizione dell'età





Predizione del sesso



Conclusioni

- I decision tree sono lo strumento più utilizzato di Data Mining
 - Semplici da comprendere
 - □ Semplici da implementare
 - □ Semplici da usare
 - Computazionalmente poco costosi
- È possibile avere problemi di overfitting
- Effettuano una classificazione: predicono un attributo categorico di output a partire da attributi categorici e/o reali in input

Cosa è necessario sapere

- Cos'è una tabella di contingenza?
- Cos'è l'information gain e come lo usiamo?
- L'algoritmo ricorsivo per costruire un decision tree non potato
- Cosa sono gli errori di training e test set
- Perché il test set error può essere più elevato del training set error
- Perché la potatura può ridurre l'errore di test set
- Come comportarsi in presenza di valori reali

Cosa non abbiamo trattato

- È possibile avere attributi a valori reali in output
 si ottengono i Regression Tree
- Per prevenire l'overfitting si possono utilizzare i Decision Tree Bayesiani
- Complessità computazionale
- Alternative all'Information Gain per splittare i nodi
- Come selezionare automaticamente MaxProb
- I dettagli del test chi-quadro
- Boosting un modo semplice per migliorare la precisione

Per approfondimenti

■ Due libri:

- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
 Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.
- C4.5 : Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) by J. Ross Quinlan

■ Decine di articoli, tra cui:

- Learning Classification Trees, Wray Buntine, Statistics and Computation (1992), Vol 2, pages 63-73
- Kearns and Mansour, On the Boosting Ability of Top-Down Decision Tree Learning Algorithms, STOC: ACM Symposium on Theory of Computing, 1996
- Decine di implementazioni software disponibili sul Web gratuitamente e/o commercialmente a prezzi tra i \$50 ed i \$300,000

Discussione

- Invece che costruire l'albero in maniera euristica (e greedy) perché non effettuare una ricerca combinatoria dell'albero ottimale?
- Se costruiamo un decision tree per predire la ricchezza, e stato civile, età e sesso sono scelti come attributi nei livelli più alti dell'albero, è ragionevole concludere che questi tre attributi sono le maggiori cause di ricchezza (o povertà)?
- ... è ragionevole pensare che gli attributi non presenti dell'albero non sono cause di ricchezza?
- ... è ragionevole pensare che gli attributi non presenti dell'albero non sono correlati con la ricchezza?

Alberi di decisione e scalabilità

- La maggior parte degli algoritmi per l'apprendimento di DT richiede che il training set risieda tutto in memoria
- Nei casi reali sono frequenti training set di milioni di record
- Strategie:
 - discretizzazione, campionamento
 - ridurre i dati per adattarsi alla memoria
 - partizionamento
 - costruzione di DT su subset
 - combinazione dei DT su subset
 - peggiora la qualità del risultato finale
 - perché?
 - strutture dati ausiliarie
 - si mantengono in memoria soltanto strutture di sintesi, che permettono di indirizzare la costruzione dell'albero
 - numerose proposte

Rainforest

- Un metodo scalabile per la costruzione di DT
- Indipendente dall'algoritmo di costruzione dell'albero
 - separa gli aspetti della classificazione da quelli di gestione della memoria
- Non influenza la qualità del risultato
- Scala in modo praticamente lineare
- Gehrke, Ramakrishnan, Ganti, "Rainforest A Framework for Fast Decision Tree Construction of Large Datasets", Data Mining and Knowledge Discovery, 4, 127-162, 2000

La costruzione di un DT in sintesi

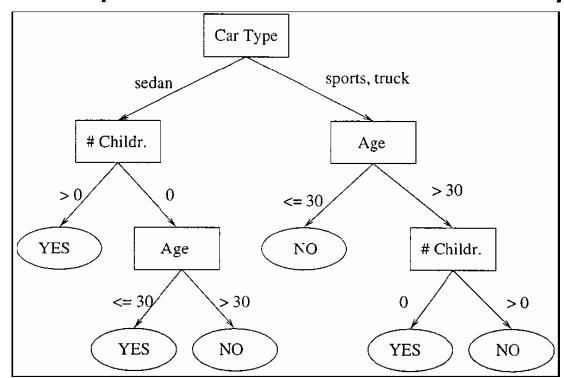
- Tecnica greedy
 - □ Si cerca un ottimo locale
- La radice contiene tutto il DB
- Si sceglie un criterio di split alla radice, generando k nodi figli, a ciascuno dei quali viene attribuita una partizione del DB del nodo padre
- Si sceglie ricorsivamente un criterio di split per tutti i nodi via via creati
 - La maggioranza degli algoritmi differiscono unicamente per la tecnica di scelta del criterio
- La fase di pruning può essere intercalata a quella di crescita o posteriore
- La fase di crescita è quella più costosa in termini di accesso ai dati

Esempio

Record Id	Car type	Age	Number of children	Subscription
1	sedan	23	0	yes
2	sports	31	1	no
3	sedan	36	1	no
4	truck	25	2	no
5	sports	30	0	no
6	sedan	36	0	no
7	sedan	25	0	yes
8	truck	36	1	no
9	sedan	30	2	yes
10	sedan	31	1	yes
11	sports	25	0	no
12	sedan	45	1	yes
13	sports	23	2	no
14	truck	45	0	yes

Esempio (ii)

- Tre attributi predittori
 - □ car type, age, number of children
- Si intende predire la classe subscriptor



Struttura dati

- AVC_n(X): per ogni attributo predittore X e per ogni nodo n si costruisce una struttura che contiene
 - □ i valori distinti dell'attributo
 - □ i conteggi del numero di tuple presenti nel nodo per ciascuna etichetta di classe

```
SELECT D.X, D.C FROM D WHERE f(n) GROUP BY D.X, D.C
```

- AVC-group_n è l'insieme degli AVC_n(X)
 per ogni attributo disponibile per lo split al nodo n
- La struttura per tutti gli attributi può essere costruita con una union che, con opportuni accorgimenti, può essere generata in un solo passo

Struttura dati – esempio

	Subscription		
Car type	Yes	No	
sedan	5	2	
sports	0	4	
truck	1	2	

Λ σο	Subscription			
Age	Yes	No		
23	1	1		
25	1	2		
30	1	1		
31	1	1		
36	0	3		
45	2	0		

Num. Children	Subscription		
Num. Cmaren	Yes	No	
0	3	3	
1	2	3	
2	1	2	

Osservazioni

AVC-group

- non è una rappresentazione compressa delle tuple selezionate da f(n)
- contiene informazioni aggregate sufficienti per la costruzione dell'albero di classificazione

Casistica

- AVC-group della radice sta in memoria
- i singoli AVC degli attributi stanno in memoria,
 ma non tutti insieme
- □ ci sono singoli AVC che non stanno in memoria

Attività svolta per ciascun nodo

- costruzione di AVC-group
 - □ leggere i dati f(n) richiede una scansione del DB,
 o della partizione materializzata che compete al nodo,
 eventualmente ripetuta per ogni attributo se non si dispone di una implementazione efficiente della union
- scelta dell'attributo di split
 - □ si applicano i criteri dell'algoritmo scelto
 - tutti gli algoritmi considerano le informazioni contenute in AVC, un attributo alla volta
- partizionamento di f(n) tra i nodi figli che vengono creati
 - □ una lettura completa e una scrittura, suddivisa fra i figli
 - se la memoria è sufficiente la scrittura può avvenire in un passo solo per tutti i figli

Valori mancanti

- L'assenza di un valore in un attributo predittore porterebbe a escludere la tupla dal training set
- Alternativa: stimare il valore mancante t.X
 - valore medio calcolato sulle tuple del nodo e per la classe t.C se l'attributo è numerico
 - □ valore più frequente calcolato sulle tuple del nodo e per la classe t.C se l'attributo è categorico